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Abstract

Many modern NLP systems rely on word

embeddings, previously trained in an un-

supervised manner on large corpora, as

base features. Efforts to obtain embed-

dings for larger chunks of text, such as

sentences, have however not been so suc-

cessful. Several attempts at learning unsu-

pervised representations of sentences have

not reached satisfactory enough perfor-

mance to be widely adopted. In this paper,

we show how universal sentence represen-

tations trained using the supervised data of

the Stanford Natural Language Inference

datasets can consistently outperform unsu-

pervised methods like SkipThought vec-

tors (Kiros et al., 2015) on a wide range

of transfer tasks. Much like how com-

puter vision uses ImageNet to obtain fea-

tures, which can then be transferred to

other tasks, our work tends to indicate the

suitability of natural language inference

for transfer learning to other NLP tasks.

Our encoder is publicly available1 .

1 Introduction

Distributed representations of words (or word

embeddings) (Bengio et al., 2003; Collobert et al.,

2011; Mikolov et al., 2013; Pennington et al.,

2014) have shown to provide useful features for

various tasks in natural language processing and

computer vision. While there seems to be a con-

sensus concerning the usefulness of word embed-

dings and how to learn them, this is not yet clear

with regard to representations that carry the mean-

ing of a full sentence. That is, how to capture the

relationships among multiple words and phrases in

a single vector remains an question to be solved.

1
https://www.github.com/facebookresearch/InferSent

In this paper, we study the task of learning

universal representations of sentences, i.e., a sen-

tence encoder model that is trained on a large cor-

pus and subsequently transferred to other tasks.

Two questions need to be solved in order to build

such an encoder, namely: what is the prefer-

able neural network architecture; and how and

on what task should such a network be trained.

Following existing work on learning word em-

beddings, most current approaches consider learn-

ing sentence encoders in an unsupervised manner

like SkipThought (Kiros et al., 2015) or FastSent

(Hill et al., 2016). Here, we investigate whether

supervised learning can be leveraged instead, tak-

ing inspiration from previous results in computer

vision, where many models are pretrained on the

ImageNet (Deng et al., 2009) before being trans-

ferred. We compare sentence embeddings trained

on various supervised tasks, and show that sen-

tence embeddings generated from models trained

on a natural language inference (NLI) task reach

the best results in terms of transfer accuracy. We

hypothesize that the suitability of NLI as a train-

ing task is caused by the fact that it is a high-level

understanding task that involves reasoning about

the semantic relationships within sentences.

Unlike in computer vision, where convolutional

neural networks are predominant, there are mul-

tiple ways to encode a sentence using neural net-

works. Hence, we investigate the impact of the

sentence encoding architecture on representational

transferability, and compare convolutional, recur-

rent and even simpler word composition schemes.

Our experiments show that an encoder based on a

bi-directional LSTM architecture with max pool-

ing, trained on the Stanford Natural Language

Inference (SNLI) dataset (Bowman et al., 2015),

yields state-of-the-art sentence embeddings com-

pared to all existing alternative unsupervised ap-

proaches like SkipThought or FastSent, while be-

http://arxiv.org/abs/1705.02364v4
https://www.github.com/facebookresearch/InferSent


ing much faster to train. We establish this finding

on a broad and diverse set of transfer tasks that

measures the ability of sentence representations to

capture general and useful information.

2 Related work

Transfer learning using supervised features has

been successful in several computer vision ap-

plications (Razavian et al., 2014). Striking ex-

amples include face recognition (Taigman et al.,

2014) and visual question answering (Antol et al.,

2015), where image features trained on ImageNet

(Deng et al., 2009) and word embeddings trained

on large unsupervised corpora are combined.

In contrast, most approaches for sentence repre-

sentation learning are unsupervised, arguably be-

cause the NLP community has not yet found the

best supervised task for embedding the semantics

of a whole sentence. Another reason is that neu-

ral networks are very good at capturing the bi-

ases of the task on which they are trained, but

can easily forget the overall information or seman-

tics of the input data by specializing too much

on these biases. Learning models on large un-

supervised task makes it harder for the model to

specialize. Littwin and Wolf (2016) showed that

co-adaptation of encoders and classifiers, when

trained end-to-end, can negatively impact the gen-

eralization power of image features generated by

an encoder. They propose a loss that incorporates

multiple orthogonal classifiers to counteract this

effect.

Recent work on generating sentence embed-

dings range from models that compose word

embeddings (Le and Mikolov, 2014; Arora et al.,

2017; Wieting et al., 2016) to more complex neu-

ral network architectures. SkipThought vectors

(Kiros et al., 2015) propose an objective func-

tion that adapts the skip-gram model for words

(Mikolov et al., 2013) to the sentence level. By en-

coding a sentence to predict the sentences around

it, and using the features in a linear model, they

were able to demonstrate good performance on 8

transfer tasks. They further obtained better results

using layer-norm regularization of their model in

(Ba et al., 2016). Hill et al. (2016) showed that the

task on which sentence embeddings are trained

significantly impacts their quality. In addition

to unsupervised methods, they included super-

vised training in their comparison—namely, on

machine translation data (using the WMT’14 En-

glish/French and English/German pairs), dictio-

nary definitions and image captioning data from

the COCO dataset (Lin et al., 2014). These mod-

els obtained significantly lower results compared

to the unsupervised Skip-Thought approach.

Recent work has explored training sentence en-

coders on the SNLI corpus and applying them on

the SICK corpus (Marelli et al., 2014), either us-

ing multi-task learning or pretraining (Mou et al.,

2016; Bowman et al., 2015). The results were in-

conclusive and did not reach the same level as sim-

pler approaches that directly learn a classifier on

top of unsupervised sentence embeddings instead

(Arora et al., 2017). To our knowledge, this work

is the first attempt to fully exploit the SNLI cor-

pus for building generic sentence encoders. As we

show in our experiments, we are able to consis-

tently outperform unsupervised approaches, even

if our models are trained on much less (but human-

annotated) data.

3 Approach

This work combines two research directions,

which we describe in what follows. First, we ex-

plain how the NLI task can be used to train univer-

sal sentence encoding models using the SNLI task.

We subsequently describe the architectures that we

investigated for the sentence encoder, which, in

our opinion, covers a suitable range of sentence

encoders currently in use. Specifically, we exam-

ine standard recurrent models such as LSTMs and

GRUs, for which we investigate mean and max-

pooling over the hidden representations; a self-

attentive network that incorporates different views

of the sentence; and a hierarchical convolutional

network that can be seen as a tree-based method

that blends different levels of abstraction.

3.1 The Natural Language Inference task

The SNLI dataset consists of 570k human-

generated English sentence pairs, manually la-

beled with one of three categories: entailment,

contradiction and neutral. It captures natural lan-

guage inference, also known in previous incarna-

tions as Recognizing Textual Entailment (RTE),

and constitutes one of the largest high-quality la-

beled resources explicitly constructed in order to

require understanding sentence semantics. We hy-

pothesize that the semantic nature of NLI makes

it a good candidate for learning universal sentence

embeddings in a supervised way. That is, we aim



to demonstrate that sentence encoders trained on

natural language inference are able to learn sen-

tence representations that capture universally use-

ful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u− v|, u ∗ v)

Figure 1: Generic NLI training scheme.

Models can be trained on SNLI in two differ-

ent ways: (i) sentence encoding-based models that

explicitly separate the encoding of the individual

sentences and (ii) joint methods that allow to use

encoding of both sentences (to use cross-features

or attention from one sentence to the other).

Since our goal is to train a generic sentence en-

coder, we adopt the first setting. As illustrated in

Figure 1, a typical architecture of this kind uses a

shared sentence encoder that outputs a representa-

tion for the premise u and the hypothesis v. Once

the sentence vectors are generated, 3 matching

methods are applied to extract relations between

u and v : (i) concatenation of the two representa-

tions (u, v); (ii) element-wise product u ∗ v; and

(iii) absolute element-wise difference |u− v|. The

resulting vector, which captures information from

both the premise and the hypothesis, is fed into

a 3-class classifier consisting of multiple fully-

connected layers culminating in a softmax layer.

3.2 Sentence encoder architectures

A wide variety of neural networks for encod-

ing sentences into fixed-size representations ex-

ists, and it is not yet clear which one best cap-

tures generically useful information. We com-

pare 7 different architectures: standard recurrent

encoders with either Long Short-Term Memory

(LSTM) or Gated Recurrent Units (GRU), con-

catenation of last hidden states of forward and

backward GRU, Bi-directional LSTMs (BiLSTM)

with either mean or max pooling, self-attentive

network and hierarchical convolutional networks.

3.2.1 LSTM and GRU

Our first, and simplest, encoders apply re-

current neural networks using either LSTM

(Hochreiter and Schmidhuber, 1997) or GRU

(Cho et al., 2014) modules, as in sequence to se-

quence encoders (Sutskever et al., 2014). For

a sequence of T words (w1, . . . , wT ), the net-

work computes a set of T hidden representations

h1, . . . , hT , with ht =
−−−−→
LSTM(w1, . . . , wT ) (or

using GRU units instead). A sentence is repre-

sented by the last hidden vector, hT .

We also consider a model BiGRU-last that con-

catenates the last hidden state of a forward GRU,

and the last hidden state of a backward GRU to

have the same architecture as for SkipThought

vectors.

3.2.2 BiLSTM with mean/max pooling

For a sequence of T words {wt}t=1,...,T , a bidirec-

tional LSTM computes a set of T vectors {ht}t.
For t ∈ [1, . . . , T ], ht, is the concatenation of a

forward LSTM and a backward LSTM that read

the sentences in two opposite directions:

−→
ht =

−−−−→
LSTMt(w1, . . . , wT )

←−
ht =

←−−−−
LSTMt(w1, . . . , wT )

ht = [
−→
ht ,
←−
ht ]

We experiment with two ways of combining the

varying number of {ht}t to form a fixed-size vec-

tor, either by selecting the maximum value over

each dimension of the hidden units (max pool-

ing) (Collobert and Weston, 2008) or by consider-

ing the average of the representations (mean pool-

ing).

The movie was great

←−

h1

←−

h2

←−

h3

←−

h4

−→

h4

−→

h3

−→

h2

−→

h1

w1 w2 w3 w4

x

x

x

x

x x x x

max-pooling

… …u :

Figure 2: Bi-LSTM max-pooling network.



3.2.3 Self-attentive network

The self-attentive sentence encoder (Liu et al.,

2016; Lin et al., 2017) uses an attention mecha-

nism over the hidden states of a BiLSTM to gen-

erate a representation u of an input sentence. The

attention mechanism is defined as :

h̄i = tanh(Whi + bw)

αi =
eh̄

T

i
uw

∑
i e

h̄T

i
uw

u =
∑

t

αihi

where {h1, . . . , hT } are the output hidden vec-

tors of a BiLSTM. These are fed to an affine trans-

formation (W , bw) which outputs a set of keys

(h̄1, . . . , h̄T ). The {αi} represent the score of

similarity between the keys and a learned con-

text query vector uw. These weights are used

to produce the final representation u, which is a

weighted linear combination of the hidden vectors.

Following Lin et al. (2017) we use a self-

attentive network with multiple views of the input

sentence, so that the model can learn which part of

the sentence is important for the given task. Con-

cretely, we have 4 context vectors u1w, u
2
w, u

3
w, u

4
w

which generate 4 representations that are then con-

catenated to obtain the sentence representation u.

Figure 3 illustrates this architecture.

The movie was great

uw

←−

h1

←−

h2

←−

h3

←−

h4

−→

h4

−→

h3

−→

h2

−→

h1

α1 α2 α3 α4

u

w1 w2 w3 w4

Figure 3: Inner Attention network architecture.

3.2.4 Hierarchical ConvNet

One of the currently best performing models on

classification tasks is a convolutional architecture

termed AdaSent (Zhao et al., 2015), which con-

catenates different representations of the sentences

at different level of abstractions. Inspired by this

architecture, we introduce a faster version consist-

ing of 4 convolutional layers. At every layer, a

representation ui is computed by a max-pooling

operation over the feature maps (see Figure 4).

……

……

… …

This is the
great
est

movie of all time

x

x

x

x

x

x

max-pooling

max-pooling

max-pooling

max-pooling

x

x
x

x

x

x u1

u2

u3

u4

u : u4u3u2u1

convolutional layer

convolutional layer

convolutional layer

convolutional layer

Figure 4: Hierarchical ConvNet architecture.

The final representation u = [u1, u2, u3, u4]
concatenates representations at different levels of

the input sentence. The model thus captures hi-

erarchical abstractions of an input sentence in a

fixed-size representation.

3.3 Training details

For all our models trained on SNLI, we use SGD

with a learning rate of 0.1 and a weight decay of

0.99. At each epoch, we divide the learning rate

by 5 if the dev accuracy decreases. We use mini-

batches of size 64 and training is stopped when the

learning rate goes under the threshold of 10−5. For

the classifier, we use a multi-layer perceptron with

1 hidden-layer of 512 hidden units. We use open-

source GloVe vectors trained on Common Crawl

840B2 with 300 dimensions as fixed word embed-

dings.

4 Evaluation of sentence representations

Our aim is to obtain general-purpose sentence

embeddings that capture generic information that

is useful for a broad set of tasks. To evalu-

ate the quality of these representations, we use

them as features in 12 transfer tasks. We present

2
https://nlp.stanford.edu/projects/glove/
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name N task C examples

MR 11k sentiment (movies) 2 ”Too slow for a younger crowd , too shallow for an older one.” (neg)
CR 4k product reviews 2 ”We tried it out christmas night and it worked great .” (pos)
SUBJ 10k subjectivity/objectivity 2 ”A movie that doesn’t aim too high , but doesn’t need to.” (subj)
MPQA 11k opinion polarity 2 ”don’t want”; ”would like to tell”; (neg, pos)
TREC 6k question-type 6 ”What are the twin cities ?” (LOC:city)
SST 70k sentiment (movies) 2 ”Audrey Tautou has a knack for picking roles that magnify her [..]” (pos)

Table 1: Classification tasks. C is the number of class and N is the number of samples.

our sentence-embedding evaluation procedure in

this section. We constructed a sentence evalua-

tion tool3 to automate evaluation on all the tasks

mentioned in this paper. The tool uses Adam

(Kingma and Ba, 2014) to fit a logistic regression

classifier, with batch size 64.

Binary and multi-class classification We use

a set of binary classification tasks (see Table 1)

that covers various types of sentence classifica-

tion, including sentiment analysis (MR, SST),

question-type (TREC), product reviews (CR), sub-

jectivity/objectivity (SUBJ) and opinion polarity

(MPQA). We generate sentence vectors and train

a logistic regression on top. A linear classifier re-

quires fewer parameters than an MLP and is thus

suitable for small datasets, where transfer learning

is especially well-suited. We tune the L2 penalty

of the logistic regression with grid-search on the

validation set.

Entailment and semantic relatedness We also

evaluate on the SICK dataset for both entailment

(SICK-E) and semantic relatedness (SICK-R). We

use the same matching methods as in SNLI and

learn a Logistic Regression on top of the joint rep-

resentation. For semantic relatedness evaluation,

we follow the approach of (Tai et al., 2015) and

learn to predict the probability distribution of re-

latedness scores. We report Pearson correlation.

STS14 - Semantic Textual Similarity While

semantic relatedness is supervised in the case

of SICK-R, we also evaluate our embeddings

on the 6 unsupervised SemEval tasks of STS14

(Agirre et al., 2014). This dataset includes sub-

sets of news articles, forum discussions, image de-

scriptions and headlines from news articles con-

taining pairs of sentences (lower-cased), labeled

with a similarity score between 0 and 5. These

tasks evaluate how the cosine distance between

two sentences correlate with a human-labeled sim-

ilarity score through Pearson and Spearman corre-

3
https://www.github.com/facebookresearch/SentEval

lations.

Paraphrase detection The Microsoft Research

Paraphrase Corpus is composed of pairs of sen-

tences which have been extracted from news

sources on the Web. Sentence pairs have been

human-annotated according to whether they cap-

ture a paraphrase/semantic equivalence relation-

ship. We use the same approach as with SICK-E,

except that our classifier has only 2 classes.

Caption-Image retrieval The caption-image

retrieval task evaluates joint image and language

feature models (Hodosh et al., 2013; Lin et al.,

2014). The goal is either to rank a large collec-

tion of images by their relevance with respect to a

given query caption (Image Retrieval), or ranking

captions by their relevance for a given query image

(Caption Retrieval). We use a pairwise ranking-

loss Lcir(x, y):

∑

y

∑

k

max(0, α − s(V y,Ux) + s(V y,Uxk))+

∑

x

∑

k′

max(0, α− s(Ux, V y) + s(Ux, V yk′))

where (x, y) consists of an image y with one

of its associated captions x, (yk)k and (yk′)k′ are

negative examples of the ranking loss, α is the

margin and s corresponds to the cosine similarity.

U and V are learned linear transformations that

project the caption x and the image y to the same

embedding space. We use a margin α = 0.2 and

30 contrastive terms. We use the same splits as

in (Karpathy and Fei-Fei, 2015), i.e., we use 113k

images from the COCO dataset (each containing

5 captions) for training, 5k images for validation

and 5k images for test. For evaluation, we split the

5k images in 5 random sets of 1k images on which

we compute Recall@K, with K ∈ {1, 5, 10} and

median (Med r) over the 5 splits. For fair compari-

son, we also report SkipThought results in our set-

ting, using 2048-dimensional pretrained ResNet-

101 (He et al., 2016) with 113k training images.

https://www.github.com/facebookresearch/SentEval


name task N premise hypothesis label

SNLI NLI 560k ”Two women are embracing while
holding to go packages.”

”Two woman are holding packages.” entailment

SICK-E NLI 10k A man is typing on a machine used
for stenography

The man isn’t operating a steno-
graph

contradiction

SICK-R STS 10k ”A man is singing a song and play-
ing the guitar”

”A man is opening a package that
contains headphones”

1.6

STS14 STS 4.5k ”Liquid ammonia leak kills 15 in
Shanghai”

”Liquid ammonia leak kills at least
15 in Shanghai”

4.6

Table 2: Natural Language Inference and Semantic Textual Similarity tasks. NLI labels are contra-

diction, neutral and entailment. STS labels are scores between 0 and 5.

Model
NLI Transfer

dim dev test micro macro

LSTM 2048 81.9 80.7 79.5 78.6
GRU 4096 82.4 81.8 81.7 80.9
BiGRU-last 4096 81.3 80.9 82.9 81.7
BiLSTM-Mean 4096 79.0 78.2 83.1 81.7
Inner-attention 4096 82.3 82.5 82.1 81.0
HConvNet 4096 83.7 83.4 82.0 80.9
BiLSTM-Max 4096 85.0 84.5 85.2 83.7

Table 3: Performance of sentence encoder ar-

chitectures on SNLI and (aggregated) transfer

tasks. Dimensions of embeddings were selected

according to best aggregated scores (see Figure 5).

Figure 5: Transfer performance w.r.t. embed-

ding size using the micro aggregation method.

5 Empirical results

In this section, we refer to ”micro” and ”macro”

averages of development set (dev) results on trans-

fer tasks whose metrics is accuracy: we compute a

”macro” aggregated score that corresponds to the

classical average of dev accuracies, and the ”mi-

cro” score that is a sum of the dev accuracies,

weighted by the number of dev samples.

5.1 Architecture impact

Model We observe in Table 3 that different mod-

els trained on the same NLI corpus lead to differ-

ent transfer tasks results. The BiLSTM-4096 with

the max-pooling operation performs best on both

SNLI and transfer tasks. Looking at the micro and

macro averages, we see that it performs signifi-

cantly better than the other models LSTM, GRU,

BiGRU-last, BiLSTM-Mean, inner-attention and

the hierarchical-ConvNet.

Table 3 also shows that better performance on

the training task does not necessarily translate in

better results on the transfer tasks like when com-

paring inner-attention and BiLSTM-Mean for in-

stance.

We hypothesize that some models are likely to

over-specialize and adapt too well to the biases of

a dataset without capturing general-purpose infor-

mation of the input sentence. For example, the

inner-attention model has the ability to focus only

on certain parts of a sentence that are useful for

the SNLI task, but not necessarily for the transfer

tasks. On the other hand, BiLSTM-Mean does not

make sharp choices on which part of the sentence

is more important than others. The difference be-

tween the results seems to come from the different

abilities of the models to incorporate general in-

formation while not focusing too much on specific

features useful for the task at hand.

For a given model, the transfer quality is also

sensitive to the optimization algorithm: when

training with Adam instead of SGD, we observed

that the BiLSTM-max converged faster on SNLI

(5 epochs instead of 10), but obtained worse re-

sults on the transfer tasks, most likely because of

the model and classifier’s increased capability to

over-specialize on the training task.

Embedding size Figure 5 compares the over-

all performance of different architectures, showing

the evolution of micro averaged performance with

regard to the embedding size.

Since it is easier to linearly separate in high di-

mension, especially with logistic regression, it is

not surprising that increased embedding sizes lead

to increased performance for almost all models.

However, this is particularly true for some mod-



Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14

Unsupervised representation training (unordered sentences)

Unigram-TFIDF 73.7 79.2 90.3 82.4 - 85.0 73.6/81.7 - - .58/.57

ParagraphVec (DBOW) 60.2 66.9 76.3 70.7 - 59.4 72.9/81.1 - - .42/.43

SDAE 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - - .37/.38

SIF (GloVe + WR) - - - - 82.2 - - - 84.6 .69/ -

word2vec BOW† 77.7 79.8 90.9 88.3 79.7 83.6 72.5/81.4 0.803 78.7 .65/.64

fastText BOW† 76.5 78.9 91.6 87.4 78.8 81.8 72.4/81.2 0.800 77.9 .63/.62

GloVe BOW† 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 0.800 78.6 .54/.56

GloVe Positional Encoding† 78.3 77.4 91.1 87.1 80.6 83.3 72.5/81.2 0.799 77.9 .51/.54

BiLSTM-Max (untrained)† 77.5 81.3 89.6 88.7 80.7 85.8 73.2/81.6 0.860 83.4 .39/.48

Unsupervised representation training (ordered sentences)

FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - .63/.64

FastSent+AE 71.8 76.7 88.8 81.5 - 80.4 71.2/79.1 - - .62/.62

SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 .29/.35

SkipThought-LN 79.4 83.1 93.7 89.3 82.9 88.4 - 0.858 79.5 .44/.45

Supervised representation training

CaptionRep (bow) 61.9 69.3 77.4 70.8 - 72.2 - - - .46/.42

DictRep (bow) 76.7 78.7 90.7 87.2 - 81.0 68.4/76.8 - - .67/.70

NMT En-to-Fr 64.7 70.1 84.9 81.5 - 82.8 - - .43/.42

Paragram-phrase - - - - 79.7 - - 0.849 83.1 .71/ -

BiLSTM-Max (on SST)† (*) 83.7 90.2 89.5 (*) 86.0 72.7/80.9 0.863 83.1 .55/.54

BiLSTM-Max (on SNLI)† 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .68/.65

BiLSTM-Max (on AllNLI)† 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 0.884 86.3 .70/.67

Supervised methods (directly trained for each task – no transfer)

Naive Bayes - SVM 79.4 81.8 93.2 86.3 83.1 - - - - -

AdaSent 83.1 86.3 95.5 93.3 - 92.4 - - - -

TF-KLD - - - - - - 80.4/85.9 - - -

Illinois-LH - - - - - - - - 84.5 -

Dependency Tree-LSTM - - - - - - - 0.868 - -

Table 4: Transfer test results for various architectures trained in different ways. Underlined are best

results for transfer learning approaches, in bold are best results among the models trained in the same

way. † indicates methods that we trained, other transfer models have been extracted from (Hill et al.,

2016). For best published supervised methods (no transfer), we consider AdaSent (Zhao et al., 2015),

TF-KLD (?), Tree-LSTM (Tai et al., 2015) and Illinois-LH system (Lai and Hockenmaier, 2014). (*)

Our model trained on SST obtained 83.4 for MR and 86.0 for SST (MR and SST come from the same

source), which we do not put in the tables for fair comparison with transfer methods.

els (BiLSTM-Max, HConvNet, inner-att), which

demonstrate unequal abilities to incorporate more

information as the size grows. We hypothesize

that such networks are able to incorporate infor-

mation that is not directly relevant to the objective

task (results on SNLI are relatively stable with re-

gard to embedding size) but that can nevertheless

be useful as features for transfer tasks.

5.2 Task transfer

We report in Table 4 transfer tasks results for

different architectures trained in different ways.

We group models by the nature of the data

on which they were trained. The first group

corresponds to models trained with unsuper-

vised unordered sentences. This includes bag-

of-words models such as word2vec-SkipGram,

the Unigram-TFIDF model, the Paragraph Vector

model (Le and Mikolov, 2014), the Sequential De-

noising Auto-Encoder (SDAE) (Hill et al., 2016)

and the SIF model (Arora et al., 2017), all trained

on the Toronto book corpus (?). The second group

consists of models trained with unsupervised or-

dered sentences such as FastSent and SkipThought

(also trained on the Toronto book corpus). We also

include the FastSent variant “FastSent+AE” and

the SkipThought-LN version that uses layer nor-

malization. We report results from models trained

on supervised data in the third group, and also re-

port some results of supervised methods trained



Caption Retrieval Image Retrieval
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Direct supervision of sentence representations

m-CNN (Ma et al., 2015) 38.3 - 81.0 2 27.4 - 79.5 3
m-CNNENS (Ma et al., 2015) 42.8 - 84.1 2 32.6 - 82.8 3
Order-embeddings (Vendrov et al., 2016) 46.7 - 88.9 2 37.9 - 85.9 2

Pre-trained sentence representations

SkipThought + VGG19 (82k) 33.8 67.7 82.1 3 25.9 60.0 74.6 4
SkipThought + ResNet101 (113k) 37.9 72.2 84.3 2 30.6 66.2 81.0 3
BiLSTM-Max (on SNLI) + ResNet101 (113k) 42.4 76.1 87.0 2 33.2 69.7 83.6 3
BiLSTM-Max (on AllNLI) + ResNet101 (113k) 42.6 75.3 87.3 2 33.9 69.7 83.8 3

Table 5: COCO retrieval results. SkipThought is trained either using 82k training samples with VGG19

features, or with 113k samples and ResNet-101 features (our setting). We report the average results on 5

splits of 1k test images.

directly on each task for comparison with transfer

learning approaches.

Comparison with SkipThought The best

performing sentence encoder to date is the

SkipThought-LN model, which was trained on

a very large corpora of ordered sentences. With

much less data (570k compared to 64M sentences)

but with high-quality supervision from the SNLI

dataset, we are able to consistently outperform

the results obtained by SkipThought vectors. We

train our model in less than a day on a single GPU

compared to the best SkipThought-LN network

trained for a month. Our BiLSTM-max trained

on SNLI performs much better than released

SkipThought vectors on MR, CR, MPQA, SST,

MRPC-accuracy, SICK-R, SICK-E and STS14

(see Table 4). Except for the SUBJ dataset, it

also performs better than SkipThought-LN on

MR, CR and MPQA. We also observe by looking

at the STS14 results that the cosine metrics in

our embedding space is much more semantically

informative than in SkipThought embedding

space (pearson score of 0.68 compared to 0.29

and 0.44 for ST and ST-LN). We hypothesize

that this is namely linked to the matching method

of SNLI models which incorporates a notion

of distance (element-wise product and absolute

difference) during training.

NLI as a supervised training set Our findings

indicate that our model trained on SNLI obtains

much better overall results than models trained

on other supervised tasks such as COCO, dictio-

nary definitions, NMT, PPDB (Ganitkevitch et al.,

2013) and SST. For SST, we tried exactly the same

models as for SNLI; it is worth noting that SST is

smaller than NLI. Our representations constitute

higher-quality features for both classification and

similarity tasks. One explanation is that the natu-

ral language inference task constrains the model to

encode the semantic information of the input sen-

tence, and that the information required to perform

NLI is generally discriminative and informative.

Domain adaptation on SICK tasks Our trans-

fer learning approach obtains better results than

previous state-of-the-art on the SICK task - can

be seen as an out-domain version of SNLI - for

both entailment and relatedness. We obtain a pear-

son score of 0.885 on SICK-R while (Tai et al.,

2015) obtained 0.868, and we obtain 86.3% test

accuracy on SICK-E while previous best hand-

engineered models (Lai and Hockenmaier, 2014)

obtained 84.5%. We also significantly outper-

formed previous transfer learning approaches on

SICK-E (Bowman et al., 2015) that used the pa-

rameters of an LSTM model trained on SNLI to

fine-tune on SICK (80.8% accuracy). We hypothe-

size that our embeddings already contain the infor-

mation learned from the in-domain task, and that

learning only the classifier limits the number of

parameters learned on the small out-domain task.

Image-caption retrieval results In Table 5, we

report results for the COCO image-caption re-

trieval task. We report the mean recalls of 5 ran-

dom splits of 1K test images. When trained with

ResNet features and 30k more training data, the

SkipThought vectors perform significantly better

than the original setting, going from 33.8 to 37.9

for caption retrieval R@1, and from 25.9 to 30.6

on image retrieval R@1. Our approach pushes

the results even further, from 37.9 to 42.4 on cap-

tion retrieval, and 30.6 to 33.2 on image retrieval.

These results are comparable to previous approach



of (Ma et al., 2015) that did not do transfer but di-

rectly learned the sentence encoding on the image-

caption retrieval task. This supports the claim that

pre-trained representations such as ResNet image

features and our sentence embeddings can achieve

competitive results compared to features learned

directly on the objective task.

MultiGenre NLI The MultiNLI corpus

(Williams et al., 2017) was recently released

as a multi-genre version of SNLI. With 433K

sentence pairs, MultiNLI improves upon SNLI

in its coverage: it contains ten distinct genres

of written and spoken English, covering most

of the complexity of the language. We augment

Table 4 with our model trained on both SNLI

and MultiNLI (AllNLI). We observe a significant

boost in performance overall compared to the

model trained only on SLNI. Our model even

reaches AdaSent performance on CR, suggesting

that having a larger coverage for the training task

helps learn even better general representations.

On semantic textual similarity STS14, we are

also competitive with PPDB based paragram-

phrase embeddings with a pearson score of 0.70.

Interestingly, on caption-related transfer tasks

such as the COCO image caption retrieval task,

training our sentence encoder on other genres

from MultiNLI does not degrade the performance

compared to the model trained only SNLI (which

contains mostly captions), which confirms the

generalization power of our embeddings.

6 Conclusion

This paper studies the effects of training sentence

embeddings with supervised data by testing on

12 different transfer tasks. We showed that mod-

els learned on NLI can perform better than mod-

els trained in unsupervised conditions or on other

supervised tasks. By exploring various architec-

tures, we showed that a BiLSTM network with

max pooling makes the best current universal sen-

tence encoding methods, outperforming existing

approaches like SkipThought vectors.

We believe that this work only scratches the sur-

face of possible combinations of models and tasks

for learning generic sentence embeddings. Larger

datasets that rely on natural language understand-

ing for sentences could bring sentence embedding

quality to the next level.
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Appendix

Max-pooling visualization for BiLSTM-max

trained and untrained Our representations

were trained to focus on parts of a sentence such

that a classifier can easily tell the difference be-

tween contradictory, neutral or entailed sentences.

In Table 8 and Table 9, we investigate how

the max-pooling operation selects the information

from the hidden states of the BiLSTM, for our

trained and untrained BiLSTM-max models (for

both models, word embeddings are initialized with

GloVe vectors).

For each time step t, we report the number of

times the max-pooling operation selected the hid-

den state ht (which can be seen as a sentence rep-

resentation centered around word wt).

Without any training, the max-pooling is rather

even across hidden states, although it seems to fo-

cus consistently more on the first and last hidden

states. When trained, the model learns to focus on

specific words that carry most of the meaning of

the sentence without any explicit attention mecha-

nism.

Note that each hidden state also incorporates in-

formation from the sentence at different levels, ex-

plaining why the trained model also incorporates

information from all hidden states.

Figure 6: Pair of entailed sentences A: Visualiza-

tion of max-pooling for BiLSTM-max 4096 un-

trained.

Figure 7: Pair of entailed sentences A: Visual-

ization of max-pooling for BiLSTM-max 4096

trained on NLI.

Figure 8: Pair of entailed sentences B: Visualiza-

tion of max-pooling for BiLSTM-max 4096 un-

trained.

Figure 9: Pair of entailed sentences B: Visual-

ization of max-pooling for BiLSTM-max 4096

trained on NLI.


