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ABSTRACT

A general approach for integrating different acoustic fea-
ture sets and acoustic models is presented. A strategy
for using a feature set as a reference and for scheduling
the execution of other feature sets is introduced. The
strategy is based on the introduction of feature variabil-
ity states. Each phoneme of a word hypothesis is as-
signed one of such states. The probability that a word
hypothesis is incorrect given the sequence of its variabil-
ity states is computed and used for deciding the intro-
duction of new features.

Significant WER reductions have been observed on
the test sets of the AURORAS corpus. Using the CH1
portions of the test sets of the Italian and Spanish cor-
pora, word error rate reductions respectively of 16.42%
for the Italian and 29.4% for Spanish were observed.

1. INTRODUCTION

It is known that Automatic Speech Recognition (ASR)
systems make errors (see, for example, [8]). This is due
to the imperfection of the various models used, on the
limitations of the feature extracted and on the approxi-
mations of the recognition engines.

With the purpose of increasing robustness, recent
ASR systems combine streams of different acoustic mea-
surements, such as multi-resolution spectral/time corre-
lates ([2], [12], [7], [4)-

Other approaches integrate some specific parameters
into a single stream of features ([11], [13]). A generaliza-
tion of this approach consists in concatenating different
sets of acoustic features into a single stream. In order to
reduce modelling complexity, algorithms have been de-
scribed to select subsets of features in a long stream us-
ing a criterion that optimizes automatic classification of
speech data into phonemes or phonetic features. Unfor-
tunately, pertinent algorithms are computationally in-
tractable with these types of classes as stated in [5],
where a sub-optimal solution is proposed. Such a solu-
tion consists in selecting a set of acoustic measurement
that guarantees a high value of the mutual information
between acoustic measurements and phonetic distinctive
features.

The approach described in this paper consieders the
possibility of dynamically combining different feature
sets and acoustic models in an ASR system.

Given a sampled input signal S = s(k7), where 7 is the
sampling period, let us consider the sequence of sam-
ples in a time window of length 7" and represent such a
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sequence for the n-th window as follows:

Y, = [s(kn)T n=0,1,....N

For each value of n, the window sequence [s(kT)]SLTH)T
of signal samples is transformed into a feature vector
Y% (nT') represented in a feature space 3.

Features have an intrinsic variability with respect to the
symbols g € @ which describe a spoken message. Vari-
ability may cause equivocation represented by the fact
that different symbols of @Q may be coded into signal
segments leading to the same vector Y%(nT'). Equivo-
cation varies from point to point of a given feature space.
In order to reduce equivocation, it is thus interesting to
vary the choice or the use of features depending on the
sample sequence based on which symbol hypotheses are
hypothesized.

2. USING DIFFERENT FEATURES AND
MODELS

Given feature samples Y%(nT'), hypotheses about sym-
bols ¢ € @ are generated by computing the poste-
rior probabilities P,[q|Y*(nT)]. Symbols may represent
phonemes, phonemes in context, transients or other pho-
netic descriptors. Computation of these probabilities is
performed using acoustic models p. If different models
and features are available, then posterior probabilities
can be obtained with log-linear interpolation as follows:

log Plg|Y] = Y wi[Y" (nT)]log Pu[qlY“(nT)] (1)

where wj;[Y"(nT')] are weights depending on the feature

sample in a reference space indicated by the super-script
r. Initially, speech analysis is performed in the reference
space S". The reference features can be the ones that
produce the best ASR results or good results with min-
imal computation time.

Depending on the value of Y (nT'), other feature sets
can be used for performing a more accurate analysis
and for reducing the equivocation on the generation of
hypotheses about symbols g € Q.

Equivocation between a channel source S which
emits symbols f € @ and the receiver R which hypoth-
esizes symbols ¢g € @ is defined as follows ([9]):

Hp(S) = - P[f g]log P[g|f] (2)
f.9

The (2) is an overall definition of equivocation over
the entire acoustic space of one or more feature sets.



Given a specific window sequence of signal samples Y,
and one or more sets of acoustic features, if f is the most
likely phoneme hypothesis for the specific time frame,
then the probability of equivocation for that frame is
given by:

Pey(nT) = > Plg|Ya]
g~ f

As an example of the application of the just intro-
duced concepts, a short introduction of the system used
for performing the experiments described in this paper
is provided in the following.

Two versions of an hybrid system consisting of an

Artificial Neural Network (ANN) and a set of Hidden
Markov acoustic Models (HMM) are used. The two
recognizers are fed by different sets of acoustic features,
but have the same topology.
The feature sets are those obtained by Multi Resolution
Analysis (MRA) followed by Principal Component
Analysis (PCA) and by Perceptual Linear Prediction
(PLP) followed by RASTA filtering. The latter features
will be indicated as JRASTAPLP. The same denoising
technique is used for both feature sets (Gemello).
The ANNs are trained to recognize phonemes and
transitions using a corpus of phonetically balanced
sentences which are completely independent from the
test data.

It is important to notice that combining the scores
of the two recognizers does not change the recognition
results if their most likely hypotheses are the same.
The ANNs have 636 outputs, one for each phoneme
and each transition between two successive phonemes.
Two streams of acoustic feature, namely Y™ (nT) and
Y7 (nT) are generated. Indices m and j respectively
refer to MRA features and JRASTAPLP features. The
vectors Y™ (nT) and Y7 (nT) represent two different
observations of a speech segment Y, centered on
the same sample. From now on, these two indices
will be used to indicate the two types of features.
The value of T is 10 msecs and each feature set con-
tains seven analysis frames centered on the frame at nT.

The two recognizers have acoustic models which
induce probability distributions in the acoustic spaces
3™ and Q7 of the two feature types. For each space, the
distributions are posterior probabilities of a phoneme
f or a diphone representing the transition between
two phonemes given an observation in that space. The
variability of the features extracted can be described
using the osterior probabilities for phonemes and di-
phones in a point of an acoustic space. Vectors Y™ (nT)
and Y7 (nT) may have similar or very different pos-
terior probabilities for the same utterance of phoneme f.

Let us consider, for the sake of simplicity, only
phoneme symbols indicated by gq. The 1 is rewritten
making explicit reference to the features obtained with
multi-resolution analysis, indicated as Y™ (nT') and two
acoustic models, one based on an ANN, indicated by A,
and one based on Gaussian mixtures, indicated by G.

The 1 can thus be written as follows:

log Plq|Y,] = wR[Y™(nT)]log Palq|Y™(nT)]
+ wE[Y™(nT)|log Palq|Y ™ (nT)] + R™(nT)

R™(nT) is a term that represents the introduction of
additional features which can reduce the equivocation in
the point of the acoustic space " = I™ corresponding
to the n-th time frame. Different feature spaces or even
different granularities in the same feature space can be
used in R™(nT). The weights in the 4 depend on a
specific time frame and can also be set to binary values
allowing the system to switche between feature sets or
acoustic models.

The contribution of R"™(nT") can be neglected if,
based on the available feature sets and models, this will
have little effect on the equivocation of the phoneme hy-
pothesization process. In other words, if the variability
of feature Y™ (nT') is low and the feature corresponds
almost always to the same phoneme.

In a previous paper [1], it is proposed to assign a
reliability state o to each vector Y*(nT') in the reference
space. The assignment is now described.

A comparison between phoneme posterior probabil-
ity distributions obtained with ANN and GMM is per-
formed on a segment SEG,(b,e,t). Symbol a describes
the type of features, b indicates the beginning time of
the segment, e indicates the end time and t the time
at the middle. The discrepancy between the two pos-
terior probability distributions P4[q|SEG,(b,e,t)] and
PL[q|SEG,(b,e,t)] for ¢ € @, is the Kullback-Leibler
distance (KLD) indicated as:

KLD,[SEG,(b, e,t)]
= D [Pi[q|SEGa(b, e,t)]||P&[a|SEGa(b, e, )] =

P4[gISEG.(b, e, t)]
=N Pulg|SE log 3 !
g% AlgISEGb.e.t)]lo8 o B G0t Y

The symbol with the highest posterior probability is
considered as the hypothesis generated with each model
in the given segment. These hypotheses are respectively
indicated as ¢%(b,e,t) and g&(b,e,t). In principle, a
low value of KLD,[SEG,(b,e,t)] does not necessarily
indicate that the two probability distributions propose
the same value of ¢ with the highest posterior probabil-
ity. For this reason, an indicator of good modeling and
reliable decision is the truth of the predicate:

CONS,[SEG,(b, e,t)] = KLDu[SEGq(b,e,t)] < 0.47
/\{gA [SEGQ (b7 €, t)] =9gaG [SEGa(b7 €, t)]}

for which there is a high probability that the phoneme
with the highest probability is correct. This is the
condition in which the first contribution to equivocation
is computed.

Let us define a variability /reliability state oq cor-
responding to the case CONS,[SEG,(b,e,t)] = true.
Given a corpus, characterizing an application domain,
if it is observed that equivocation is low in o7 when
a = m, then the term R™(nT) can be ignored in this
state. When CONS,[SEG,(b,e,t)] is not true, either



better models or other features should be considered.
Assuming that the available models are already good
and it is unlikely to observe a great improvement with
new models, then it is worthwhile considering a new set
of features. Other reliability states, motivated by exper-
iments described in (icassp06), are defined as follows.

o2+ {ga[SEG.(b,e,t)] # ga|SEG.(b,e,t)]}
NKLD,SEG,(b,e,t)] < 0.4}

g3 {gA[SEGa(bvevt)] :gG[SEGa(b7eat)]}
NKLD,[SEG,(b,e,t)] > 0.4} (5)

oy {galSEG.(b,e,t)] # ga|SEG.(b,e,t)]}
NKLD,SEG,(b,e,t)] > 0.4}

Other states can be defined corresponding to other con-
ditions whose characterization is motivated by experi-
mental evidence.

3. DYNAMIC SELECTION OF FEATURE
SETS

A strategy is now described for dynamically selecting a
feature set during recognition.

Let W = wy...wp ... wyg be the sequence of word
and pause hypotheses generated by an initial decoder
using features of §”. Let wp = hy...hg...hg be the
sequence of phonemes given in the lexicon of wy,.

Let us associate to each phoneme hj a descriptor oy
belonging to the alphabet of the variability /reliability
states. Let >, = 01...0%...0k ) be the sequence of
variability labels associated to the phonemes of wy,.

The features of & are likely to be the cause
of a wrong hypothesization of wy, if the probability
Plwp|)_,] is not low. The symbol @ indicates the
fact that hypothesis wy, is not correct. If the probability
Plwy| )", ] is above a given threshold for one word or for
time segment containing a sequence of words and pauses,
then a new set of features is computed in that segment
and recognition is also performed with the new set of
features. The experimental results described below have
been obtained by using feature vectors Y™ (nT) as refer-
ence and feature vectors Y7 (nT) as additional features
used only when the reference ones are not reliable.

The following approximation is proposed for com-
puting Plw|},]:

1 K (h)

k=

—

where P(hy|oy,) indicates the probability that phoneme
hypothesis hy is incorrect. Such a probability is com-
puted as follows:

1
Ploxlin) Pli) (7)
P(oy|hk) P(hy)

P(hy|ox) =

which is computed by cumulating counts for each
phoneme in all contexts.

Other specific thresholds are used for dealing with
the cases of word insertion and deletion.

As the ASR systems use acoustic models which are
trained with a general telephone corpus without using

any data of the application which is being tested, the
training sets of AURORA3 have been used for tuning
the just describes strategy.

When word hypotheses are generated with feature
vectors Y7 (nT), it is possible that there is a word con-
sensus with hypotheses generated with the reference fea-
tures. It is possible to investigate whether or not there
is a consensus on an error. This has not been done yet
and the problem will be investigated in future work. In
the absence of word consensus, a decision is made based
on the hypothesis with the lowest probability of being
wrong. Notice that AURORAS is a corpus of connected
digits in strings of variable and unknown length. The
language models is just a simple finite state automaton
with word models in parallel an feed-back from the final
to the initial state.

4. EXPERIMENTS

Experiments have been performed with the Italian and
Spanish components of the Aurora3 database (con-
nected digits collected in car environment). The acous-
tic models employed were hybrid HMM-NN trained
on large corpora completely disjoint from Awurora3
namely the domain independent, phonetically balanced
SpeechDat1-2 corpora.

The training corpora are made of telephonic read speech
and were recorded in quiet environments. Different
HMM-ANN models were trained, one for J-RASTA PLP
and one for MRA, with the same training set for each
language.

The Aurora3 corpus contains a set of close-talking ut-
terances indicated as CHO and a set of hand-free utter-
ances, indicated as CH1. Utterances of CHO are nearly
clean, as the close-talking microphone collects little en-
vironmental noise, while utterances of CH1 are quite
noisy as the hand-free microphone gathers a lot of car
noise. Aurora3 is divided into training and test compo-
nents.

The test corpus was used for producing the results, in
terms of WER, reported in Table 1. Baseline results
were obtained with MRA features which resulted to per-
form better than JRASTAPLP features for this task and
with this setting (Gemello). Oracle results refer to what
is obtained by comparing MRA and JRASTAPLP result
with the reference and always deciding for the correct
result if it is produced by at least one of the systems.
This strategy results are the results obtained with the
strategy proposed in this paper.

corpus baseline | this strategy | oracle
Ttalian CH1 21.13 17.66 15.03
Spanish CH1 12.3 8.68 6.8

Table 1: Results in terms of WER with the baseline, the
Oracle and the strategy proposed in this paper

With the proposed procedure, 339 (54%) sequences
for the Italian and 309 (50.4%) for the Spanish where
validated with the (6). The WER on the validated se-
quences were 4.8% for the Italian and 0.5% for Spanish.
The percentage of words evaluated with the two feature
streams for which there was consensus among the two



recognizers was 11.5% for Italian and 18.3% for Spanish.
Among these words, the WER was 33.7% for Italian and
12.8% for Spanish. The results show differences between
the two languages, but a similar trend. The new feature
set is applicable and provides different results in less
than half of the word hypotheses. When it is applicable
and the two recognizers do not provide the same result,
the strategy leads to a significant WER reduction. The
WER reduction is 16.42% for the Italian and 29.4% for
Spanish.

5. CONCLUSIONS

A general approach for integrating different acoustic fea-
ture sets and acoustic models has been presented. A
strategy for using a feature set as a reference and for
scheduling the execution of other feature sets has been
introduced. Additional features are computed and used
only in case of high probability that the initial feature
set has generated an incorrect word hypothesis. Ex-
periments have been conducted using ANN and GMM
acoustic models and features obtained with MRA and
JRASTAPLP. Significant WER reductions have been
observed on the test sets of the AURORA3 corpus.
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